A climatological benchmark for operational radar rainfall biasreduction

2021 
Abstract. The presence of significant biases in real-time radar quantitative precipitation estimations (QPE) limits its use in hydro-meteorological forecasting systems. Here, we introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors, which vary per grid cell and day of the year. The factors are based on a historical set of 10 years of 5-min radar and reference rainfall data for the Netherlands. CARROTS is both operationally available and independent of real-time rain gauge availability, and can thereby provide an alternative to current QPE adjustment practice. In addition, it can be used as benchmark for QPE algorithm development. We tested this method on the resulting rainfall estimates and discharge simulations for twelve Dutch catchments and polders. We validated the results against the operational mean field bias (MFB) adjusted rainfall estimates and a reference dataset. This reference consists of the radar QPE, that combines an hourly MFB adjustment and a daily spatial adjustment using observations from 31 automatic and 325 manual rain gauges. Only the automatic gauges of this network are available in real-time for the MFB adjustment. The resulting climatological correction factors show clear spatial and temporal patterns. Factors are higher far from the radars and higher from December through March than in other seasons, which is likely a result of sampling above the melting layer during the winter months. Annual rainfall sums from CARROTS are comparable to the reference and outperform the MFB adjusted rainfall estimates for catchments far from the radars. This difference is absent for catchments closer to the radars. QPE underestimations are amplified when used in the hydrological model simulations. Discharge simulations using the QPE from CARROTS outperform those with the MFB adjusted product for all but one basin. Moreover, the proposed factor derivation method is robust. It is hardly sensitive to leaving individual years out of the historical set and to the moving window length, given window sizes of more than a week.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map