Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC

2019
We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energy-estimation methods that utilize extensive air showervariables such as the core position, showerangle, and showerlateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the showerenergy with only the number of photomultipliers triggered. This new methodology yields a much improved energy resolution over the previous analysis and extends HAWC's ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebulais well fit to a log parabolashape $\left(\frac{dN}{dE} = \phi_0 \left(E/\textrm{7 TeV}\right)^{-\alpha-\beta\ln\left(E/\textrm{7 TeV}\right)}\right)$ with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 meters from the showeraxis, the best-fit values are $\phi_o$=(2.35$\pm$0.04$^{+0.20}_{-0.21}$)$\times$10$^{-13}$ (TeV cm$^2$ s)$^{-1}$, $\alpha$=2.79$\pm$0.02$^{+0.01}_{-0.03}$, and $\beta$=0.10$\pm$0.01$^{+0.01}_{-0.03}$. For the second estimator, a neural network which uses the charge distribution in annuli around the core and other variables, these values are $\phi_o$=(2.31$\pm$0.02$^{+0.32}_{-0.17}$)$\times$10$^{-13}$ (TeV cm$^2$ s)$^{-1}$, $\alpha$=2.73$\pm$0.02$^{+0.03}_{-0.02}$, and $\beta$=0.06$\pm$0.01$\pm$0.02. The first set of uncertainties are statistical; the second set are systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.
    • Correction
    • Source
    • Cite
    • Save
    34
    References
    83
    Citations
    NaN
    KQI
    []
    Baidu
    map