Validation, Implementation, and Clinical Utility of Whole Genome Sequence-Based Bacterial Identification in the Clinical Microbiology Laboratory.

2021 
The application of next-generation sequencing extends from microbial identification to epidemiologic insight and antimicrobial resistance prediction. Despite this potential, the roadblock for clinical laboratories lies in implementation and validation of such complex technology and data analysis. Here, we describe a validation study using whole-genome sequencing (WGS) for pan-bacterial identification (ID) in a clinical laboratory setting, and discuss the clinical relevance. A diverse set of 125 bacterial isolates, including a subset of isolates without genus (25) and/or species (10) ID, were analyzed by de novo assembly and reference genome mapping. The 16S rRNA, rpoB, and groEL genes were used for ID. Using WGS, 100% (89 of 89) and 89% (79 of 89) of isolates were identified to the genus and species levels, respectively. WGS also provided improved results for the majority of isolates (25 of 35) that were reported originally with genus-only or descriptive IDs. Chart review identified cases in which improved genus and/or species level ID by WGS may have had a positive impact on patient care. Reasons included the use of an ineffective antibiotic owing to unclear ID, use of antibiotics when not clinically indicated, and help with an outbreak investigation. The implementation of next-generation sequencing in a clinical microbiology setting is a challenging but necessary task. Our study provides a model for the validation and implementation of bacterial ID by WGS in such a setting.
    • Correction
    • Source
    • Cite
    • Save
    28
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map