KIF2C regulates synaptic plasticity and cognition by mediating dynamic microtubule invasion of dendritic spines

2021
Abstract Dynamic microtubules play a critical role in cell structure and function. In nervous system, microtubules specially extend into and out of synapses to regulate synaptic development and plasticity. However, the detailed polymerization especially the depolymerization mechanism that regulates dynamic microtubules in synapses is still unclear. In this study, we find that KIF2C, a dynamic microtubule depolymerization protein without known function in the nervous system, plays a vital role in the structural and functional plasticity of synapses and regulates cognitive function. Using RNAi knockdown and conditional knockout approaches, we showed that KIF2C regulates spine morphology and synaptic membrane expression of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) receptors. Moreover, KIF2C deficiency leads to impaired excitatory transmission, long-term potentiation, and altered cognitive behaviors in mice. Mechanistically, KIF2C regulates microtubule dynamics and microtubule invasion of spines in neurons by its microtubule depolymerization capability in a neuronal activity-dependent manner. This study explores a novel function of KIF2C in the nervous system and provides an important regulatory mechanism on how microtubule invasion of spines regulates synaptic plasticity and cognition behaviors.
    • Correction
    • Source
    • Cite
    • Save
    55
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map