Surface and Tropospheric Water Vapor Variability and Decadal Trends at Two Supersites of CO-PDD (Cézeaux and Puy de Dôme) in Central France

2018
We present an analysis of decadal in situ and remote sensing observations of water vaporover the Cezeaux and puy de Dome, located in central France (45° N, 3° E), in order to document the variability, cycles and trends of surface and tropospheric water vaporat different time scales and the geophysical processes responsible for the water vapordistributions. We use meteorological stations, GPS (Global Positioning System), and lidar datasets, supplemented with three remote sources of water vapor(COSMIC- radio-occultation, ERA-interim-ECMWF numerical model, and AIRS-satellite). The annual cycleof water vaporis clearly established for the two sites of different altitudes and for all types of measurement. Cezeaux and puy de Dome present almost no diurnal cycle, suggesting that the variability of surface water vaporat this site is more influenced by a sporadic meteorological system than by regular diurnal variations. The lidar dataset shows a greater monthly variability of the vertical distribution than the COSMIC and AIRS satellite products. The Cezeaux site presents a positive trend for the GPS water vaportotal column (0.42 ± 0.45 g·kg−1/decade during 2006–2017) and a significant negative trend for the surface water vapormixing ratio (−0.16 ± 0.09 mm/decade during 2002–2017). The multi-linear regression analysis shows that continental forcings (East Atlantic Pattern and East Atlantic-West Russia Pattern) have a greater influence than oceanic forcing ( North Atlantic Oscillation) on the water vaporvariations.
    • Correction
    • Source
    • Cite
    • Save
    60
    References
    6
    Citations
    NaN
    KQI
    []
    Baidu
    map