A Data Censoring Approach for Predictive Error Modeling of Flow in Ephemeral Rivers

2020 
©2020. American Geophysical Union. All Rights Reserved. Flow simulations of ephemeral rivers are often highly uncertain. Therefore, error models that can reliably quantify predictive uncertainty are particularly important. Existing error models are incapable of producing predictive distributions that contain >50% zeros, making them unsuitable for use in highly ephemeral rivers. We propose a new method to produce reliable predictions in highly ephemeral rivers. The method uses data censoring of observed and simulated flow to estimate model parameters by maximum likelihood. Predictive uncertainty is conditioned on the simulation in such a way that it can generate >50% zeros. Our method allows the setting of a censoring threshold above zero. Many conceptual hydrological models can only approach, but never equal, zero. For these hydrological models, we show that setting a censoring threshold slightly above zero is required to produce reliable predictive distributions in highly ephemeral catchments. Our new method allows reliable predictions to be generated even in highly ephemeral catchments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    33
    Citations
    NaN
    KQI
    []
    Baidu
    map