Heat conduction of electrons and phonons in thermal interface materials

2021 
The heat conduction of thermal interface materials (TIMs) is derived from the transport of electrons and phonons in the materials. Investigation on the thermal transport of electrons and phonons in TIMs will aid in promoting the advancement of TIMs with high performance. In this review, we summarize the current strategies for regulating the thermal transport of electrons and phonons during the preparation of TIMs. The interplay between the polymer matrix and fillers and the thermally conductive network formed by fillers is discussed. In addition, we present some new thermal measurement techniques to measure the interfacial thermal resistance. The reduction of interfacial thermal resistance is helpful for obtaining TIMs with larger thermal conductivity. Finally, we provide possible future research directions for the material design and measurement of interfacial thermal resistance.
    • Correction
    • Source
    • Cite
    • Save
    186
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map