Cavity-Enhanced Atom-Photon Entanglement with Subsecond Lifetime

2021
A cold atomic ensemble suits well for optical quantum memories, and its entanglement with a single photon forms the building block for quantum networks that give promise for many revolutionary applications. Efficiency and lifetime are among the most important figures of merit for a memory. In this Letter, we report the realization of entanglement between an atomic ensemble and a single photon with subsecond lifetime and high efficiency. We engineer dual control modes in a ring cavity to create entanglement and make use of three-dimensional optical lattice to prolong memory lifetime. The memory efficiency is 38% for 0.1 s storage. We verify the atom-photon entanglement after 1 s storage by testing the Bell inequality with a result of $S=2.36\ifmmode\pm\else\textpm\fi{}0.14$.
    • Correction
    • Source
    • Cite
    • Save
    61
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map