Post-mortem analysis of tungsten plasma facing components in tokamaks: Raman microscopy measurements on compact, porous oxide and nitride films and nanoparticles

2020 
Raman microscopy is one of the methods that could be used for future post-mortem analyses of ITER plasma facing components samples. This study shows that is useful for studying tungsten-based materials containing impurities including oxides and nitrides. Here, we apply pulsed laser deposition and DC argon glow discharges to produce tungsten-containing synthetic films (compact, porous) and nanoparticles and investigate the influence of their morphology on the measured Raman spectra. The amounts of oxygen and/or nitrogen in the films are also investigated. Comparative data are obtained by X-ray Photoelectrons Spectroscopy, Atomic Force Microscopy, Electron Microscopies (Scanning and Transmission), Energy Dispersive X-ray spectroscopy, Time-of-Flight Elastic Recoil Detection Analysis. The power density of the laser beam used to perform Raman microscopy is varied by up to 4 orders of magnitude (0.01-20 mW/μm2) and is found very helpful to investigate thermal stability of films and nanoparticles. As a first result, we give evidence that Raman microscopy is sensitive enough to detect surface native oxides. Secondly, more tungsten oxides are detected in porous materials and nanoparticles than in compact films, Raman band intensities being found correlated to oxygen content. Thirdly, thermal stability of these films (i.e. structural and chemical modification under laser heating) is found to be lowered when compact films contain a sufficiently large amount of nitrogen. This finding suggests that nitrogen can be substituted by oxygen during Raman laser induced heating occurring in ambient air. Finally, our methodology can be used to rapidly characterize morphology and chemistry of the samples analyzed, and also to create oxides at the micrometer scale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    3
    Citations
    NaN
    KQI
    []
    Baidu
    map