Helicoid-arc van Hove singularities in topological chiral crystals

2021
Van Hove singularity are electronic instabilities that lead to many fascinating interactions, such as superconductivity and charge-density waves. And despite much interest, the nexus of emergent correlation effects from van Hove singularities and topological states of matter remains little explored in experiments. By utilizing synchrotron-based angle-resolved photoemission spectroscopy and Density Functional Theory, here we provide the first discovery of the helicoid quantum nature of topological Fermi arcs inducing van Hove singularities. In particular, in topological chiral conductors RhSi and CoSi we directly observed multiple types of inter- and intra-helicoid-arc mediated singularities, which includes the type-I and type-II van Hove singularity. We further demonstrate that the energy of the helicoid-arc singularities are easily tuned by chemical engineering. Taken together, our work provides a promising route to engineering new electronic instabilities in topological quantum materials.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map