Enhanced Cell Division Is Required for the Generation of Memory CD4 T Cells to Migrate Into Their Proper Location

2020
CD4 T cell memory is fundamental for long-lasting immunity and effective secondary responses following infection or vaccination. We have previously found that memory CD4 T cells specific for systemic antigens preferentially reside in the bone marrow (BM) and arise from splenic CD49b+T-bet+ CD4 T cells. However, how the precursors of BM memory CD4 T cells are generated during an immune reaction is unknown. We show here that BM memory precursors are generated via augmented rates of cell division throughout a primary immune response. Treatment with the cytostatic drug cyclophosphamide or blockade of the CD28/B7 co-stimulatory pathway at the beginning of the contraction phase abrogates the generation of BM memory precursors. We determine that, following a critical number of cell divisions, memory precursors downregulate CCR7 and upregulate IL-2Rβ, indicating that loss of CCR7 and gain of IL-2 signal are required for the migration of memory precursors toward the BM.
    • Correction
    • Source
    • Cite
    • Save
    45
    References
    3
    Citations
    NaN
    KQI
    []
    Baidu
    map