MNSs genotyping by MALDI‐TOF MS shows high concordance with serology, allows gene copy number testing and reveals new St(a) alleles

2016
Results of genotyping with true high-throughput capability for MNSs antigens are underrepresented, probably because of technical issues, due to the high level of nucleotide sequence homology of the paralogous genes GYPA, GYPBand GYPE. Eight MNSs-specific single nucleotide polymorphisms (SNP) were detected using matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS) in 5800 serologically M/N and S/s pre-typed Swiss blood donors and 50 individuals of known or presumptive black African ethnicity. Comparison of serotype with genotype delivered concordance rates of 99·70% and 99·90% and accuracy of genotyping alone of 99·88% and 99·95%, for M/N and S/s, respectively. The area under the curve of peak signals was measured in intron 1 of the two highly homologous genes GYPBand GYPE and allowed for gene copy number variationestimates in all individuals investigated. Elevated GYPB:GYPE ratios accumulated in several carriers of two newly observed GYP*401 variants, termed type G and H, both encoding for the low incidence antigen St(a). In black Africans, reduced GYPBgene contents were proven in pre-typed S-s-U- phenotypes and could be reproduced in unknown specimens. Quantitative gene copy number estimates represented a highly attractive supplement to conventional genotyping, solely based on MNSs SNPs.
    • Correction
    • Source
    • Cite
    • Save
    45
    References
    13
    Citations
    NaN
    KQI
    []
    Baidu
    map