Imaging protein aggregates in the serum and cerebrospinal fluid in Parkinson's disease

2021 
Aggregation of α-synuclein plays a key role in the development of Parkinson's disease. Soluble aggregates are present not only within human brain but also the CSF and blood. Characterising the aggregates present in these biofluids may provide insights into disease mechanisms and also have potential for aiding diagnosis. We have used two optical single-molecule imaging methods called aptamer DNA-PAINT and single-aggregate confocal fluorescence together with high-resolution atomic force microscopy for specific detection and characterisation of individual aggregates with intermolecular β-sheet structure, present in the CSF and serum of 15 early stage Parkinson's disease patients compared to 10 healthy age-matched controls. We found aggregates ranging in size from 20 nm to 200 nm, in both CSF and serum. There was a difference in aggregate size distribution between Parkinson's and control groups with a significantly increased number of larger aggregates (longer than 150 nm) in the serum of patients with Parkinson's disease. In order to determine the chemical composition of the aggregates, we performed aptamer DNA-PAINT on serum following α-synuclein and amyloid-β immunodepletion in an independent cohort of 11 early stage Parkinson's disease patients and 10 controls. β-sheet aggregates in the serum of Parkinson's disease patients were found to consist of, on average, 50% α-synuclein and 50% amyloid-β in contrast to 30% α-synuclein and 70% amyloid-β in control serum (the differences in the proportion of these aggregates were statistically significant between diseased and control groups (p = 1.7 x 10-5 for each species). The ratio of the number of β-sheet α-synuclein aggregates to β-sheet amyloid-β aggregates in serum extracted using our super-resolution method discriminated Parkinson's disease cases from controls with an accuracy of 98.2% (AUC = 98.2%, p = 4.3 x 10-5). Our data suggest that studying the protein aggregates present in serum can provide information about the disruption of protein homeostasis occurring in Parkinson's disease and warrants further investigation as a potential biomarker of disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map