Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water.

2021
Electrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method. Highly selective electrocatalytic semi-hydrogenation of alkynes over a noble-metal-free catalyst is highly desirable. Here, authors synthesize sulfur-containing copper nanowire sponges for selective electrocatalytic alkyne semi-hydrogenation using water as the hydrogen source.
    • Correction
    • Source
    • Cite
    • Save
    61
    References
    5
    Citations
    NaN
    KQI
    []
    Baidu
    map