Ezh2-dependent epigenetic reprogramming controls a developmental switch between modes of gastric neuromuscular regulation

2018 
Physiological interconversion between specialized cell types has only been described in a few mammalian tissues and the mechanisms remain obscure. Using genetic lineage tracing during postnatal development and in-vitro models we demonstrate conversion of gastric interstitial cells of Cajal (ICC), regulatory cells that electrically pace phasic contractions and mediate nitrergic and cholinergic neural control of smooth muscle cells, into phenotypically distinct 9fibroblast-like9 interstitial cells (FLC), which only mediate purinergic signaling. Mechanistically, we find this transition to be epigenetically governed by H3K27 trimethylation of cell identity-related promoters whose susceptibility to repression is predicted by H3K27 acetylation patterns in ICC. The phenotypic switch was reversible by inhibition, knockdown or in-vivo genomic inactivation of the polycomb H3K27 methyl-transferase Ezh2. These results demonstrate a role for Ezh2-mediated epigenetic repression in physiological mammalian transdifferentiation and identify FLC as a reserve from which ICC can potentially be restored in common gastrointestinal disorders where ICC are depleted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map