DNA‐Mediated Assembly of Multispecific Antibodies for T Cell Engaging and Tumor Killing

2019 
Targeting T-cells against cancer cells is a direct means of treating cancer, and has already shown great responses in clinical treatment of B-cell malignancies. A simple way to redirect T-cells to cancer cells is by using multispecific antibody (MsAb) that contains different arms for specifically "grabbing" the T-cells and cancer cells; as such, the T-cells are activated upon target engagement and the killing begins. Here, a nucleic acid mediated protein-protein assembly (NAPPA) approach is implemented to construct a MsAb for T-cell engaging and tumor killing. Anti -CD19 and -CD3 single-chain variable fragments (scFvs) are conjugated to different l-DNAs with sequences that form the Holliday junction, thus allowing spontaneous assembly of homogeneous protein-DNA oligomers containing two anti-CD19 and one anti-CD3 scFvs. The new MsAb shows strong efficacy in inducing Raji tumor cell cytotoxicity in the presence of T-cells with EC50 approximately 0.2 x 10(-9) m; it also suppresses tumor growth in a Raji xenograft mouse model. The data indicates that MsAbs assembled from protein-DNA conjugates are effective macromolecules for directing T-cells for tumor killing. The modular nature of the NAPPA platform allows rapid generation of complex MsAbs from simple antibody fragments, while offering a general solution for preparing antibodies with high-order specificity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    3
    Citations
    NaN
    KQI
    []
    Baidu
    map