Uropathogenic Escherichia coli virulence factor α hemolysin reduces histone acetylation to inhibit expression of pro-inflammatory cytokine genes.

2021
Urinary tract infections are common and costly diseases affecting millions of people. Uropathogenic Escherichia coli (UPEC) is a primary cause of these infections and has developed multiple strategies to avoid the host immune response. Here, we dissected the molecular mechanisms underpinning UPEC inhibition of inflammatory cytokine in vitro and in vivo. We found that UPEC infection simulates NFkB activation but does not result in transcription of cytokine genes. Instead, UPEC-mediated suppression of the metabolic enzyme ATP citrate lyase (ACLY) results in decreased acetyl-CoA level, leading to reduced H3K9 histone acetylation in the promotor region of CXCL8. These effects were dependent on the UPEC virulence factor α-hemolysin and were reversed by exogenous acetate. In a murine cystitis model, prior acetate supplementation rapidly resolved UPEC-elicited immune responses and improved tissue recovery. Thus, upon infection, UPEC rearranges host cell metabolism to induce chromatin remodeling processes that subvert expression of host innate immune response genes.
    • Correction
    • Source
    • Cite
    • Save
    49
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map