Efficient aerodynamic shape optimization through free-form mesh morphing and reduced order CFD modeling

2019
Although computational power is increasingly available, high-fidelity simulation based aerodynamic shape optimization is still challenging for industrial applications. To make the simulation based optimization acceptable in the practice of engineering design, a technique combining mesh morphing and reduced order modeling is proposed for efficient aerodynamic optimization based on CFD simulations. The former technique avoids the time-consuming procedure of geometry discretization. And the latter speeds up the procedure of field solution by combining pre-computed solution snapshots. To test the efficiency of the proposed method, the windshield of a motorbike is analyzed and optimized. It is shown that even the total number of cells of the mesh is around 0.4 million, the CFD computation and the post processing of the results can be completed in less than 10 seconds if the reduced order model is adopted. Running on a personal computer, the generic algorithm is applied to optimize the profile of the windshield. A 8% reduction of the drag coefficient is achieved after 800 queries of the reduced order CFD model and the total CPU time is only around 2 hours.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map