Poleward shift in the Southern Hemisphere westerly winds synchronous with the deglacial rise in CO2

2021 
The Southern Hemisphere westerly winds strongly influence deep ocean circulation and carbon storage. While the westerlies are hypothesised to play a key role in regulating atmospheric CO2 over glacial-interglacial cycles, past changes in their position and strength remain poorly constrained. Here, we use a compilation of planktic foraminiferal d18O from across the Southern Ocean and constraints from an ensemble of climate models to reconstruct changes in the westerlies over the last deglaciation. We find a 4.7° (2.9-6.9°, 95% confidence interval) equatorward shift and about a 25% weakening of the westerlies during the Last Glacial Maximum (about 20,000 years ago) relative to the mid-Holocene (about 6,000 years ago). Our reconstruction shows that the poleward shift in the westerlies over deglaciation closely mirrors the rise in atmospheric CO2. Experiments with a 0.25° resolution ocean-sea-ice-carbon model demonstrate that shifting the westerlies equatorward substantially reduces the overturning rate of the abyssal ocean, leading to a suppression of CO2 outgassing from the Southern Ocean. Our results establish a central role for the westerly winds in driving the deglacial CO2 rise, and suggest natural CO2 outgassing from the Southern Ocean is likely to increase as the westerlies shift poleward due to anthropogenic warming.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map