First Observation of Ferroelectricity in ∼1 nm Ultrathin Semiconducting BaTiO3 Films

2019 
The requirements of multifunctionality in thin-film systems have led to the discovery of unique physical properties and degrees of freedom, which exist only in film forms. With progress in growth techniques, one can decrease the film thickness to the scale of a few nanometers (∼nm), where its unique physical properties are still pronounced. Among advanced ultrathin film systems, ferroelectrics have generated tremendous interest. As a prototype ferroelectric, the electrical properties of BaTiO3 (BTO) films have been extensively studied, and it has been theoretically predicted that ferroelectricity sustains down to ∼nm thick films. However, efforts toward determining the minimum thickness for ferroelectric films have been hindered by practical issues surrounding large leakage currents. In this study, we used ∼nm thick BTO films, exhibiting semiconducting characteristics, grown on a LaAlO3/SrTiO3 (LAO/STO) heterostructure. In particular, we utilized two-dimensional electron gas at the LAO/STO heterointerface...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    22
    Citations
    NaN
    KQI
    []
    Baidu
    map