Reduced body sizes in climate-impacted tropical insect assemblages are primarily explained by range shifts

2019 
Both community composition changes due to species redistribution and within-species size shifts may alter body size structures under climate warming. Here we assess the relative contribution of these processes in community-level body size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages (>8000 individuals) on Mt. Kinabalu, Borneo in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size re-structuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map