The hdeD Gene Represses the Expression of Flagella Biosynthesis via LrhA in Escherichia coli K-12.

2021
Escherichia coli survives under acid stress conditions by the glutamic acid-dependent acid resistance (GAD) system, which enzymatically decreases intracellular protons. We found a linkage between GAD and flagellar systems in E. coli. The hdeD gene, one of the GAD cluster genes, encodes an uncharacterized membrane protein. A reporter assay showed that the hdeD promoter was induced in a GadE-dependent manner when grown in the M9 glycerol medium. Transcriptome analysis revealed that most of the transcripts were from genes involved in flagella synthesis, and cell motility increased not only in the hdeD-deficient mutant but also in the gadE-deficient mutant. Defects in both the hdeD and gadE increased the intracellular level of FliA, an alternative sigma factor for flagella synthesis, activated by the master regulator FlhDC. The promoter activity of the lrhA gene, which encodes repressor for the flhDC operon, was found to decrease in both the hdeD- and gadE-deficient mutants. Transmission electron microscopy showed that the number of flagellar filaments on the hdeD-, gadE-, and lrhA-deficient cells increased, and all three mutants showed higher motility than the parent strain. Thus, HdeD in the GAD system activates the lrhA promoter, resulting in a decrease in flagellar filaments in E. coli cells. We speculated that the synthesis of HdeD, stimulated in E. coli exposed to acid stress, could control the flagella biosynthesis by sensing slight changes in pH at the cytoplasmic membrane. This could help in saving energy through termination of flagella biosynthesis and improve bacterial survival efficiency within the animal digestive system. IMPORTANCE E. coli cells encounter various environments from the mouth down to the intestines within the host animals. The pH of gastric juice is lower than 2.0, and the bacterial must quickly respond and adapt to the following environmental changes before reaching the intestines. The quick response plays a role in cellular survival in the population, whereas adaptation may contribute to species survival. The GAD and flagella systems are important for response to low pH in E. coli. Here, we identified the novel inner membrane regulator HdeD, encoding in the GAD cluster, to repress the synthesis of flagella. These insights provide a deeper understanding of how the bacteria enter the animal digestive system, survive, and form colonies in the intestines.
    • Correction
    • Source
    • Cite
    • Save
    1
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map