Seasonal variability of Air-Sea Fluxes in two contrasting basins of the north Indian Ocean

2020
Abstract Latent Heat Flux (LHF) and Sensible Heat Flux (SHF) are the two important parameters in air-sea interactions and hence have significant implications for any coupled ocean-atmospheric model. These two fluxes are conventionally computed from met-ocean parameters using bulk aerodynamic formulations; or the Coupled Ocean Atmosphere Response Experiment (COARE) bulk flux algorithms. Here COARE 3.5 algorithm is used to estimate the heat flux from two Ocean Moored Buoy Network for northern Indian Ocean (OMNI) buoy met-ocean observations in Arabian Sea (AS) and the Bay of Bengal (BoB). The AS and BoB are two ocean basins which are situated in same latitudinal range, but experience drastically differing in their met-ocean conditions, especially during the monsoon seasons. In this study, we have computed and compared the LHF and SHF at two different buoy locations in the AS and BoB and analysed their variability during three different seasons from November 2012 to September 2013. Additionally, 20 years (1998-2017) of Objectively Analysed (OA) Flux data sets collocated with the OMNI buoy locations were also utilised to the analyse the long period seasonal variabilities. The flux terms show strong seasonal variability with several peaks during the monsoon seasons in both the ocean basins. LHF varies directly with wind speed (WS) and inversely with relative humidity (RH). The correlation of LHF with WS is greater than 0.7 and RH is nearly -0.6 with few exceptions during pre-monsoon season in the AS and southwest monsoon in the BoB. However, SHF is less correlated with WS (∼0.3 to 0.5). The difference of sea surface temperature and air temperature (denoted as SST-AT) plays a significant role in determining SHF with a correlation greater than 0.6 in both the basins.
    • Correction
    • Source
    • Cite
    • Save
    24
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map