Unravelling the interactive effect of soil and atmospheric mercury influencing mercury distribution and accumulation in the soil-rice system.

2022
Abstract Mercury (Hg) accumulation in rice is an emerging health concern worldwide. However, sources and interactions responsible for Hg species accumulation in different rice tissues are still uncertain. Four experimental plots were carefully designed at an artisanal Hg mining site and a control site to evaluate the effect of atmospheric and soil Hg contents on Hg accumulation in rice. We showed that inorganic Hg (IHg) contents in rice tissues grown either in contaminated or control site soil (non-contaminated soil) were higher at Hg artisanal mining site than those at the control site. Elevated total gaseous mercury (TGM) levels in ambient air were the predominant source of IHg to rice at the Hg mining area. Methylmercury (MeHg) concentrations in rice plant tissues increased in proportionality with MeHg contents in paddy soil. Our results suggest that both atmosphere and soil Hg sources have been impacted the IHg accumulation in rice. Above ground rice tissues, grains, leaves, and stalk accumulated IHg from both atmosphere and soil to varying degrees. Nonetheless, the study also provides the first direct evidence that atmospheric Hg accumulated by above-ground rice tissues could be translocated to below-ground tissues (roots). However, the extent to which atmosphere or soil Hg contributes to IHg in rice tissues may vary with each source's concentration gradient at the given site. No evidence of in planta Hg methylation was found during the current study. Hence, paddy fields are potential MeHg production sites, whereas paddy soil is a unique MeHg accumulation source in rice plants. This study expands and clarifies the contribution of various sources involved in Hg accumulation in the soil rice system. The findings here provide the basis for future research strategies to deal with the global issue of Hg contaminated rice.
    • Correction
    • Source
    • Cite
    • Save
    100
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map