Evidence for Late-stage Eruptive Mass-loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient.

2019
We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high- cadencedata from the Zwicky Transient Facility as a rapidly rising ($1.4\pm0.1$ mag/hr) and luminous ($M_{g,\mathrm{peak}}=-20$ mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity ($L_{\mathrm{bol}} \gtrsim 3 \times 10^{44}$ erg $\mathrm{sec}^{-1}$), the short rise time ($t_{\mathrm{rise}}= 3$ days in $ g$- band), and the blue colors at peak ($g-r\sim-0.4$) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature ($T_{\mathrm{eff}}\gtrsim40,000$ K) spectra of a stripped-envelope SN. A retrospective search revealed luminous ($M_g \sim M_r \approx -14\,$mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release $E_\mathrm{\gamma,iso} 10$ days) light curve requires an additional energy source, which could be the radioactive decayof Ni-56.
    • Correction
    • Source
    • Cite
    • Save
    1
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map