High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries

2019 
The application of graphene for electrochemical energy storage has received tremendous attention; however, challenges remain in synthesis and other aspects. Here we report the synthesis of high-quality, nitrogen-doped, mesoporous graphene particles through chemical vapor deposition with magnesium-oxide particles as the catalyst and template. Such particles possess excellent structural and electrochemical stability, electronic and ionic conductivity, enabling their use as high-performance anodes with high reversible capacity, outstanding rate performance (e.g., 1,138 mA h g−1 at 0.2 C or 440 mA h g−1 at 60 C with a mass loading of 1 mg cm−2), and excellent cycling stability (e.g., >99% capacity retention for 500 cycles at 2 C with a mass loading of 1 mg cm−2). Interestingly, thick electrodes could be fabricated with high areal capacity and current density (e.g., 6.1 mA h cm−2 at 0.9 mA cm−2), providing an intriguing class of materials for lithium-ion batteries with high energy and power performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    77
    Citations
    NaN
    KQI
    []
    Baidu
    map