Extracting the Jugular Venous Pulse from Anterior Neck Contact Photoplethysmography

2020
The jugular venous pulse (JVP) is the reference physiological signal used to detect right atrial and central venous pressure (CVP) abnormalities in cardio-vascular diseases (CVDs) diagnosis. Invasive central venous line catheterization has always been the gold standard method to extract it reliably. However, due to all the risks it entails, novel non-invasive approaches, exploiting distance cameras and lasers, have recently arisen to measure the JVP at the external and internal jugular veins. These remote options however, constraint patients to very specific body positions in front of the imaging system, making it inadequate for long term monitoring. In this study, we demonstrate, for the first time, that reflectance photoplethysmography (PPG) can be an alternative for extracting the JVP from the anterior jugular veins, in a contact manner. Neck JVP-PPG signals were recorded from 20 healthy participants, together with reference ECG and arterial finger PPG signals for validation. B-mode ultrasound imaging of the internal jugular vein also proved the validity of the proposed method. The results show that is possible to identify the characteristic a, c, v pressure waves in the novel signals, and confirm their cardiac-cycle timings in consistency with established cardiac physiology. Wavelet coherence values (close to 1 and phase shifts of ±180°) corroborated that neck contact JVP-PPG pulses were negatively correlated with arterial finger PPG. Average JVP waveforms for each subject showed typical JVP pulses contours except for the singularity of an unknown "u" wave occurring after the c wave, in half of the cohort. This work is of great significance for the future of CVDs diagnosis, as it has the potential to reduce the risks associated with conventional catheterization and enable continuous non-invasive point-of-care monitoring of CVP, without restricting patients to limited postures.
    • Correction
    • Source
    • Cite
    • Save
    17
    References
    6
    Citations
    NaN
    KQI
    []
    Baidu
    map