Localized tail state distribution and hopping transport in ultrathin zinc-tin-oxide thin film transistor

2017 
Carrier transport properties of solution processed ultra thin (4 nm) zinc-tin oxide (ZTO) thin film transistor are investigated based on its transfer characteristics measured at the temperature ranging from 310 K to 77 K. As temperature decreases, the transfer curves show a parellel shift toward more postive voltages. The conduction mechanism of ultra-thin ZTO film and its connection to the density of band tail states have been substantiated by two approaches, including fitting logarithm drain current (log ID) to T−1/3 at 310 K to 77 K according to the two-dimensional Mott variable range hopping theory and the extraction of density of localized tail states through the energy distribution of trapped carrier density. The linear dependency of log ID vs. T−1/3 indicates that the dominant carrier transport mechanism in ZTO is the variable range hopping. The extracted value of density of tail states at the conduction band minimum is 4.75 × 1020 cm−3 eV−1 through the energy distribution of trapped carrier densit...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    9
    Citations
    NaN
    KQI
    []
    Baidu
    map