Observation of the Crossover from Photon Ordering to Delocalization in Tunably Coupled Resonators

2019 
Networks of nonlinear resonators offer intriguing perspectives as quantum simulators for non-equilibrium many-body phases of driven-dissipative systems. Here, we employ photon correlation measurements to study the radiation fields emitted from a system of two superconducting resonators, coupled nonlinearly by a superconducting quantum interference device (SQUID). We apply a parametrically modulated magnetic flux to control the linear photon hopping rate between the two resonators and its ratio with the cross-Kerr rate. When increasing the hopping rate, we observe a crossover from an ordered to a delocalized state of photons. The presented coupling scheme is intrinsically robust to frequency disorder and may therefore prove useful for realizing larger-scale resonator arrays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    38
    Citations
    NaN
    KQI
    []
    Baidu
    map