Radial density profile and stability of capillary discharge plasma waveguides of lengths up to 40 cm

2021
We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 %. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map