High-resolution structure and dynamics of mitochondrial complex I - insights into the proton pumping mechanism

2021 
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a 1 MDa membrane protein complex with a central role in energy metabolism. Redox-driven proton translocation by complex I contributes substantially to the proton motive force that drives ATP synthase. Several structures of complex I from bacteria and mitochondria have been determined but its catalytic mechanism has remained controversial. We here present the cryo-EM structure of complex I from Yarrowia lipolytica at 2.1 [A] resolution, which reveals the positions of more than 1600 protein-bound water molecules, of which [~]100 are located in putative proton translocation pathways. Another structure of the same complex under steady-state activity conditions at 3.4 [A] resolution indicates conformational transitions that we associate with proton injection into the central hydrophilic axis. By combining high-resolution structural data with site-directed mutagenesis and large-scale molecular dynamics simulations, we define details of the proton translocation pathways, and offer new insights into the redox-coupled proton pumping mechanism of complex I.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map