Destruction of refractory carbon grains drives the final stage of proto-planetary disk chemistry

2021
Here we aim to explore the origin of the strong C2H lines to reimagine the chemistry of protoplanetary disks. There are a few key aspects that drive our analysis. First, C2H is detected in young and old systems, hinting at a long-lived chemistry. Second, as a radical, C2H is rapidly destroyed, within <1000 yr. These two statements hint that the chemistry responsible for C2H emission must be predominantly in the gas-phase and must be in equilibrium. Combining new and published chemical models we find that elevating the total volatile (gas and ice) C/O ratio is the only natural way to create a long lived, high C2H abundance. Most of the \ce{C2H} resides in gas with a Fuv/n-gas ~ 10^-7 G0 cm^3. To elevate the volatile C/O ratio, additional carbon has to be released into the gas to enable an equilibrium chemistry under oxygen-poor conditions. Photo-ablation of carbon-rich grains seems the most straightforward way to elevate the C/O ratio above 1.5, powering a long-lived equilibrium cycle. The regions at which the conditions are optimal for the presence of high C/O ratio and elevated C2H abundances in the gas disk set by the Fuv/n-gas ~ 10^-7 G0 cm^3 condition lie just outside the pebble disk as well as possibly in disk gaps. This process can thus also explain the (hints of) structure seen in C2H observations.
    • Correction
    • Source
    • Cite
    • Save
    110
    References
    10
    Citations
    NaN
    KQI
    []
    Baidu
    map