Visualization of Endogenous ERK1/2 in Cells with a Bioorthogonal Covalent Probe

2017
The RAS–RAF–MEK–ERK pathway has been intensively studied in oncology, with RAS known to be mutated in ∼30% of all human cancers. The recent emergence of ERK1/2 inhibitors and their ongoing clinical investigationdemands a better understanding of ERK1/2 behavior following small-molecule inhibition. Although fluorescent fusion proteins and fluorescent antibodies are well-established methods of visualizing proteins, we show that ERK1/2 can be visualized via a less-invasive approach based on a two-step process using inverse electron demand Diels–Alder cycloaddition. Our previously reported trans- cyclooctene-tagged covalent ERK1/2 inhibitor was used in a series of imaging experiments following a click reaction with a tetrazine-tagged fluorescent dye. Although limitations were encountered with this approach, endogenous ERK1/2 was successfully imaged in cells, and “on-target” staining was confirmed by over-expressing DUSP5, a nuclear ERK1/2 phosphatase that anchors ERK1/2 in the nucleus.
    • Correction
    • Source
    • Cite
    • Save
    32
    References
    7
    Citations
    NaN
    KQI
    []
    Baidu
    map