Multi-target affect detection in the wild: an exploratory study

2019 
Affective computing aims to detect a person's affective state (e.g. emotion) based on observables. The link between affective states and biophysical data, collected in lab settings, has been established successfully. However, the number of realistic studies targeting affect detection in the wild is still limited. In this paper we present an exploratory field study, using physiological data of 11 healthy subjects. We aim to classify arousal, State-Trait Anxiety Inventory (STAI), stress, and valence self-reports, utilizing feature-based and convolutional neural network (CNN) methods. In addition, we extend the CNNs to multi-task CNNs, classifying all labels of interest simultaneously. Comparing the F1 score averaged over the different tasks and classifiers the CNNs reach an 1.8% higher score than the classical methods. However, the F1 scores barely exceed 45%. In the light of these results, we discuss pitfalls and challenges for physiology-based affective computing in the wild.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    13
    Citations
    NaN
    KQI
    []
    Baidu
    map