Inhibition of PRMT3 Activity Selectively Prevents LXR-driven Transcription of Hepatic Lipogenic Genes in vivo

2018 
Agonists for the liver X receptor (LXR) are considered promising therapeutic moieties in cholesterol-driven diseases by promoting cellular cholesterol efflux. However, current clinical application of these agents is hampered by the concomitant LXR-induced activation of a lipogenic transcriptional network, leading to hepatic steatosis . Recent studies have suggested that protein arginine methyltransferase 3 (PRMT3) may act as a selective co-activator of LXR activity. Here we verified the hypothesis that PRMT3 inhibition selectively disrupts the ability of LXR to stimulate lipogenesis , while maintaining the capacity of LXR to modulate cholesterol homeostasis . A combination of the LXR agonist T0901317 and palm oil was administered to C57BL/6 mice to maximally stimulate LXR and PRMT3 activity, in absence and presence of the allosteric PRMT3 inhibitor SGC707. Treatment with the PRMT3 inhibitor SGC707 did not negatively influence the T0901317/palm oil induced upregulation of the cholesterol efflux genes ABCA1 and ABCG1 in peritoneal cells. In contrast, SGC707 treatment was associated with a significant decrease in the hepatic expression of the lipogenic gene FAS (-64%; p obstruction of lipogenic gene transcription coincided with a significant 2.3-fold (p triglyceride content as compared to the T0901317 and palm oil treated control group. Inhibition of PRMT3 activity by SGC707 treatment selectively impairs LXR-driven transcription of hepatic lipogenic genes, while the positive effect of LXR stimulation on cholesterol efflux pathways is maintained.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map