An Exponential Algorithm for Bottom Reflectance Retrieval in Clear Optically Shallow Waters from Multispectral Imagery without Ground Data

2021
Bottom reflectance is a significant parameter characterizing the bottom types for clear optically shallow waters, typically in oceanic islands and reefs. However, there is not an effective physics-based method for inverting the bottom reflectance using multispectral images. In this study, we propose a novel approach for quantitatively inverting the bottom reflectance at 550 nm without the dependence of in situ bottom reflectance data or any other priori knowledge. By linking different pixels in the same image and utilizing the strong linear relationship between their water depths and the spectral related parameters, the global situation of the radiative transfer model was constrained, and an exponential relationship between the log-transformed ratio of the blue–green band reflectance and the bottom reflectance was established. The proposed model was checked by comparing the Hydrolight input bottom reflectance with that inverted from Hydrolight simulated spectrum, resulting in correlating well. Our method has successfully performed using WorldView-2 and Landsat-8 in Midway Island in the North Pacific Ocean, with the cross- and indirectly checking and obtained reliable and robust results. In addition, we assessed the potential of the quantitative bottom reflectance in benthic classification and inversion ranges under different bottom reflectance. These results indicated that compared with those methods relying on in situ data or hyperspectral imagery, our algorithm is more likely to efficiently improve the parameterization of bottom reflectance, which can be very useful for benthic habitat mapping and transferred to large-scale regions in clean reef waters, as well as monitor time-series dynamics of oceanic bottom types to forecast coral reef bleaching.
    • Correction
    • Source
    • Cite
    • Save
    40
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map