The Higgs trilinear coupling and the scale of new physics

2020 
We consider modifications of the Higgs potential due to new physics at high energy scales. These upset delicate cancellations predicted by the Standard Model for processes involving Higgs bosons and longitudinal gauge bosons, and lead to a breakdown of the theory at high energies. We focus on modifications of the Higgs trilinear coupling and use the violation of tree-level unitarity as an estimate of the scale where the theory breaks down. We obtain a completely model-independent bound of $$ \underset{\sim }{<} $$ 13 TeV for an order-1 modification of the trilinear. We argue that this bound can be saturated only in fine-tuned models, and the scale of new physics is likely to be much lower. The most stringent bounds are obtained from amplitudes involving multiparticle states that are not conventional scattering states. Our results show that a future determination of the Higgs cubic coupling can point to a well-defined scale of new physics that can be targeted and explored at future colliders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    34
    Citations
    NaN
    KQI
    []
    Baidu
    map