Effect of Out-Gassing on the Onset of Hypersonic Boundary Layer Transition

2019
Prediction and control of the onset of transition and the associated variation in aerothermodynamic parameters in high-speed flows is key to optimize the performance and design of Thermal Protection Systems (TPS) of next-generation aerospace vehicles [1]. Boundary Layer Transition (BLT) characteristics can influence the surface heating budget determining the TPS thickness and consequently its weight penalty. Ablative heatshields are designed to alleviate the high heat flux at the surface through pyrolysis of their polymeric matrix and subsequent fiber ablation [2]. Pyrolysis leads to out-gassing and non-uniform ablation lead to surface roughness, both of which are known to influence the transition process. An ablator impacts BLT through three main routes: gas injecting into the boundary layer from the wall, changing the surface heat transfer due to wall-flow chemical reactions, and modifying surface roughness [3]. In preparation to Mars 2020 mission post-flight analysis, the predictive transition capability has been initiated toward hard-coupling porous material response analysis and aerothermal environment calculation.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map