Structured Laser Beams: Towards 2-micron Femtosecond Laser Vortices

2021
Structured ultrashort-pulse laser beams, and in particular eigenmodes of the paraxial Helmholtz equation, are currently extensively studied for novel potential applications in various fields, e.g., laser plasma acceleration, attosecond science, and fine micromachining. To extend these prospects further, in the present work we push forward the advancement of such femtosecond structured laser sources into the 2-μm spectral region. Ultrashort-pulse Hermite– and Laguerre–Gaussian laser modes both with a pulse duration around 100 fs are successfully produced from a compact solid-state laser in combination with a simple single-cylindrical-lens converter. The negligible beam astigmatism, the broad optical spectra, and the almost chirp-free pulses emphasize the high reliability of this laser source. This work, as a proof of principle study, paves the way toward few-cycle pulse generation of optical vortices at 2 μm. The presented light source can enable new research in the fields of interaction with organic materials, next generation optical detection, and optical vortex infrared supercontinuum.
    • Correction
    • Source
    • Cite
    • Save
    36
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map