Towards a probiotic approach for building plumbing - Nutrient-based selection during biofilm formation on flexible polymeric materials

2020
Upon entering building plumbing systems, drinking water bacteria experience considerable changes in environmental conditions. For example, some flexible polymeric materials leach organic carbon, which increases bacterial growth and reduces diversity. Here we show that the carbon supply by a flexible polymeric material drives nutrient-based selection within establishing biofilm communities. We found that migrating carbon from EPDM coupons resulted in considerable growth for different drinking water communities (0.2 - 3.3 x 10^8 cells/cm^2). All established biofilm communities showed low diversity (29 - 50 taxa/biofilm), with communities dominated by even viewer taxa (e.g., 5 taxa accounting for 94 ± 5 % relative abundance, n = 15). Interestingly, biofilm communities shared some taxa (e.g., Methylobacterium spp.) and families (e.g., Comamonadaceae), despite the difference in starting communities. Moreover, selected biofilm communities performed better than their original communities regarding maximum attachment (91 ± 5 vs. 69 ± 23 %, n = 15) and attachment rate (5.0 ± 1.7 x 10^4 vs. 2.4 ± 1.2 x 10^4 cells/cm^2/h, n = 15) when exposed to new EPDM coupons. Our results demonstrate nutrient-based selection during initial biofilm formation on a flexible polymeric material and a resulting benefit to selected communities. We anticipate our findings to help connecting observational microbiological findings with their underlying ecological principles. Regarding initial biofilm formation, attachment dynamics, growth, and selection thereof are important for the management of microbial communities. In fact, managing initial colonization by supplying specific carbon and/or introducing consciously chosen/designed communities potentially paves the way for a probiotic approach for building plumbing materials.
    • Correction
    • Source
    • Cite
    • Save
    54
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map