Emissions of biogenic volatile organic compounds (BVOCs) from the rhizosphere of Scots pine ( Pinus sylvestris ) seedlings exposed to warming, moderate N addition and bark herbivory by large pine weevil ( Hylobius abietis )

2021
Biogenic volatile organic compound (BVOC) research has been mostly focused on foliar emissions. In this experiment, the main focus was on rhizosphere BVOC emissions of Scots pine seedlings under changing growth conditions. Soil-growing Scots pines were exposed to increased air (0.5°C) and soil (4.0°C) temperature and N addition (30 kg N ha− 1 yr− 1) for three growing seasons in a field experiment. In addition to these factors, seedlings were exposed to bark herbivory by large pine weevils in two last seasons. Gas-chromatography and mass-spectrometry was used for analyzing the BVOC samples collected from pine rhizosphere. Almost 98 % of BVOCs were non-oxygenated monoterpenes (nMTs), 1 % oxygenated monoterpenes (oMTs), 0.5 % sesquiterpenes (SQTs), and 1 % other BVOCs. In both years, there was an interaction of warming, N addition and bark herbivory on rhizosphere BVOC emissions. In 2015, warming and N addition in single exposures decreased oMT emissions, while herbivory in single exposure increased oMT emissions. In 2016, the three-way interaction showed that the effects of warming, N addition and herbivory on BVOCs were mainly detected in single exposures. In 2016, warming decreased nMT, oMT, SQT and other BVOC emissions; N addition decreased oMT and SQT emissions; and herbivory decreased SQT and other BVOC emissions. Warming and N addition in single exposures decreased the rhizosphere BVOC emissions. The effect of bark herbivory on BVOC emissions varied between the years from increase to decrease. It seems that under altered growth conditions Scots pine seedlings may reduce carbon investment to rhizosphere BVOCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map