Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors

2020
Cytosine base editors (CBEs) enable targeted C•G-to-T•A conversions in genomic DNA. Recent studies report that BE3, the original CBE, induces a low frequency of genome-wide Cas9-independent off-target C•G-to-T•A mutation in mouse embryos and in rice. Here we develop multiple rapid, cost-effective methods to screen the propensity of different CBEs to induce Cas9-independent deamination in Escherichia coli and in human cells. We use these assays to identify CBEs with reduced Cas9-independent deamination and validate via whole-genome sequencing that YE1, a narrowed-window CBE variant, displays background levels of Cas9-independent off-target editing. We engineered YE1 variants that retain the substrate-targeting scope of high-activity CBEs while maintaining minimal Cas9-independent off-target editing. The suite of CBEs characterized and engineered in this study collectively offer ~10–100-fold lower average Cas9-independent off-target DNA editing while maintaining robust on-target editing at most positions targetable by canonical CBEs, and thus are especially promising for applications in which off-target editing must be minimized. Methods to efficiently detect Cas9-independent cytosine base editor off-target activity enable the identification and development of variants with minimal off-target editing and robust on-target editing.
    • Correction
    • Source
    • Cite
    • Save
    62
    References
    106
    Citations
    NaN
    KQI
    []
    Baidu
    map