Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products

2020 
Abstract Hierarchically macroporous-mesoporous (HMMP) Cu/Zn alloy catalysts are reported to promote CO2 electroreduction towards liquid C2 products. HMMP Cu/Zn alloys with two types of distinct pores (∼320 nm and ∼20 nm) and adjustable alloy compositions are prepared through the interfacial self-assembly of two polymer templates and metal precursors. Due to add-in synergies of hierarchically porous structures and bimetallic elemental compositions, the resultant HMMP Cu/Zn alloy catalysts remarkably promote the deep electroreduction of CO2 to liquid C2 products while simultaneously suppressing the competitive proton reduction. Among them, HMMP Cu5Zn8 exhibits the best electrocatalytic selectivity (with a very high ethanol production of 46.6 % at −0.8 V) and excellent stability (even after electrocatalysis for 11 h) towards CO2 electroreduction. This strategy allows for the reliable synthesis of other HMMP alloy nanocatalysts for a wide range of electrocatalytic applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    40
    Citations
    NaN
    KQI
    []
    Baidu
    map