Biodegradation of Pyrethroids by a Hydrolyzing Carboxylesterase EstA from Bacillus cereus BCC01

2019 
Microbial degradation has been considered as a rapid, green, and cost-effective technique to reduce insecticide pollutions in a contaminated environment. However, the instability and low efficacy of non-indigenous microorganisms hampers their further exploitation when being introduced into a real environmental matrix. In order to overcome the restriction that these functional microorganisms are under, we investigated the optimal conditions to improve the pyrethroid-degrading ability of one previously isolated bacterium Bacillus cereus BCC01, where 9.6% of the culture suspension (with cell density adjusted to OD600 = 0.6) was inoculated into 50 mL media and cultivated at pH 8 and 30 °C, and its metabolic pathway was illuminated by analyzing the main metabolites via gas chromatography mass spectrometry (GC-MS). Most importantly, a key pyrethroid-hydrolyzing carboxylesterase gene estA was identified from the genomic library of strain BCC01, and then expressed in Escherichia coli BL21 (DE3). After purification, the recombinant protein EstA remained soluble, displaying high degrading activity against different pyrethroids and favorable stability over a wide range of temperatures (from 15 °C to 50 °C) and pH values (6.5–9). Therefore, the EstA-associated biodegradation of pyrethroids was determined, which could provide novel insights to facilitate the practical application of B. cereus BCC01 in the microbial detoxification of pyrethroid contamination.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    11
    Citations
    NaN
    KQI
    []
    Baidu
    map