The rise in preanalytical errors during COVID-19 pandemic.

2021
Introduction: The COVID-19 pandemic has posed several challenges to clinical laboratories across the globe. Amidst the outbreak, errors occurring in the preanalytical phase of sample collection, transport and processing, can further lead to undesirable clinical consequences. Thus, this study was designed with the following objectives: (i) to determine and compare the blood specimen rejection rate of a clinical laboratory and (ii) to characterise and compare the types of preanalytical errors between the pre-pandemic and the pandemic phases. Materials and methods: This retrospective study was carried out in a trauma-care hospital, presently converted to COVID-19 care centre. Data was collected from (i) pre-pandemic phase: 1st October 2019 to 23rd March 2020 and (ii) pandemic phase: 24th March to 31st October 2020. Blood specimen rejection rate was calculated as the proportion of blood collection tubes with preanalytical errors out of the total number received, expressed as percentage. Results: Total of 107,716 blood specimens were screened of which 43,396 (40.3%) were received during the pandemic. The blood specimen rejection rate during the pandemic was significantly higher than the pre-pandemic phase (3.0% versus 1.1%; P < 0.001). Clotted samples were the commonest source of preanalytical errors in both phases. There was a significant increase in the improperly labelled samples (P < 0.001) and samples with insufficient volume (P < 0.001), whereas, a significant decline in samples with inadequate sample-anticoagulant ratio and haemolysed samples (P < 0.001). Conclusion: In the ongoing pandemic, preanalytical errors and resultant blood specimen rejection rate in the clinical laboratory have significantly increased due to changed logistics. The study highlights the need for corrective steps at various levels to reduce preanalytical errors in order to optimise patient care and resource utilisation.
    • Correction
    • Source
    • Cite
    • Save
    21
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map