Coincident angle-resolved state-selective EUV photoelectron spectroscopy of acetylene molecules: a candidate system for time-resolved dynamics

2021
The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range 19-40 eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the C2H2+ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the 4π-collection geometry of the velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.
    • Correction
    • Source
    • Cite
    • Save
    48
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map