Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo

2018 
Osteosarcoma is the most common primary malignant tumor of bone, the long-term survival of which has stagnated in the past several decades. In the present study, we investigated the anticancer effect of honokiol (HNK), an active component isolated and purified from the magnolia officinalis on human osteosarcoma cells. Our results showed that honokiol caused dose-dependent and time-dependent cell death in human osteosarcoma cells. The types of cell death induced by honokiol were primarily autophagy and apoptosis. Furthermore, honokiol induced G0/G1 phase arrest, elevated the levels of glucose-regulated protein (GRP)−78, an endoplasmic reticular stress (ERS)-associated protein, and increased the production of intracellular reactive oxygen species (ROS). In contrast, reducing production of intracellular ROS using N-acetylcysteine, a scavenger of ROS, concurrently suppressed honokiol-induced cellular apoptosis, autophagy, and cell cycle arrest. Consequently, honokiol stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2. Furthermore, pretreatment of osteosarcoma cells with PD98059, an inhibitor of ERK1/2, inhibited honokiol-induced apoptosis and autophagy. Finally, honokiol suppressed tumor growth in the mouse xenograft model. Taken together, our results revealed that honokiol caused G0/G1 phase arrest, induced apoptosis, and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells. Honokiol is therefore a promising candidate for development of antitumor drugs targeting osteosarcoma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    163
    Citations
    NaN
    KQI
    []
    Baidu
    map