A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy

2021
Abstract In post-operative radiotherapy for prostate cancer, precisely contouring the clinical target volume (CTV) to be irradiated is challenging, because the cancerous prostate gland has been surgically removed, so the CTV encompasses the microscopic spread of tumor cells, which cannot be visualized in clinical images like computed tomography or magnetic resonance imaging. In current clinical practice, physicians’ segment CTVs manually based on their relationship with nearby organs and other clinical information, but this allows large inter-physician variability. Automating post-operative prostate CTV segmentation with traditional image segmentation methods has yielded suboptimal results. We propose using deep learning to accurately segment post-operative prostate CTVs. The model proposed is trained using labels that were clinically approved and used for patient treatment. To segment the CTV, we segment nearby organs first, then use their relationship with the CTV to assist CTV segmentation. To ease the encoding of distance-based features, which are important for learning the CTV contours’ overlap with and the distance from the surrounding OARs, we add distance prediction as an auxiliary task to the CTV network. To make the DL model practical for clinical use, we use Monte Carlo dropout (MCDO) to estimate model uncertainty. Using MCDO, we estimate and visualize the 95% upper and lower confidence bounds for each prediction which informs the physicians of areas that might require correction. The model proposed achieves an average Dice similarity coefficient (DSC) of 0.87 on a holdout test dataset, much better than established methods, such as atlas-based methods (DSC
    • Correction
    • Source
    • Cite
    • Save
    43
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map