Design and Comparison of Magnetically-Actuated Dexterous Forceps Instruments for Neuroendoscopy

2020
Robot-assisted minimally invasive surgical (MIS) techniques offer improved instrument precision and dexterity, reduced patient trauma and risk, and promise to lessen the skill gap among surgeons. These approaches are common in general surgery, urology, and gynecology. However, MIS techniques remain largely absent for surgical applications with narrow, confined workspaces, such as neuroendoscopy. The limitation stems from a lack of small yet dexterous robotic tools. In this work, we present the first instance of a surgical robot with a direct magnetically-driven end effector capable of being deployed through a standard neuroendoscopic working channel (3.2 mm outer diameter) and operate at the neuroventricular scale. We propose a physical model for the gripping performance of three unique end-effector magnetization profiles and mechanical designs. Blocking force rates per external magnetic flux density were 0.309 N/T, 0.880 N/T, and 0.351 N/T for the three designs which matched the physical models prediction within 14.9% error. The rate of gripper closure per external magnetic flux density had a mean percent error of 11.2% compared to the model. The robots performance was qualitatively evaluated during a pineal region tumor resection on a tumor analogue in a silicone brain phantom. These results suggest that wireless magnetic actuation may be feasible for dexterously manipulating tissue during minimally invasive neurosurgical procedures.
    • Correction
    • Source
    • Cite
    • Save
    36
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map