Single-bubble dynamics in histotripsy and high-amplitude ultrasound: modeling and validation

2020
A variety of approaches have been used to model the dynamics of a single, isolated bubble nucleated by a microsecond length high-amplitude ultrasound pulse (e.g. a histotripsy pulse). Until recently, the lack of single-bubble experimental radius vs. time data for bubble dynamics under a well-characterized driving pressure has limited model validation efforts. This study uses radius vs. time measurements of single, spherical histotripsy-nucleated bubbles in water to quantitatively compare and validate a variety of bubble dynamics modeling approaches, including compressible and incompressible models as well as different thermal models. A strategy for inferring an analytic representation of histotripsy waveforms directly from experimental radius vs. time and cavitation threshold data is presented. We compare distributions of a calculated validation metric obtained for each model applied to 88 experimental data sets. There is minimal distinction (<1%) among the modeling approaches for compressibility and thermal effects considered in this study. These results suggest that our proposed strategy to infer the waveform, combined with simple models minimizing parametric uncertainty and computational resource demands accurately represent single-bubble dynamics in histotripsy, including at and near the maximum bubble radius. Remaining sources of parametric and model-based uncertainty are discussed.
    • Correction
    • Source
    • Cite
    • Save
    61
    References
    5
    Citations
    NaN
    KQI
    []
    Baidu
    map